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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2555

EFFECT OF TAPER RATIO ON THE LOW-SPEED ROLLING STABILITY
IERIVATIVES OF SWEPT AND UNSWEPT WINGS
OF ASPECT RATIO 2.611

By Jack D. Brewer and Iewis R. Fisher
SUMMARY

An investigation has been conducted on a series of tapered swept
wings in the 6-foot-diameter rolling-flow test section of the Langley
stability tunnel under conditions simulating rolling flight. The results
of the tests showed that a decrease in taper ratio (ratio of tip chord
to root chord) of a swept wing caused a small decrease in damping in
roll at low and moderate 1lift coefficients; at high lift coefficients,
decreasing the taper ratio caused a large reduction in the damping in
roll and greatly reduced the increase obtained for the untapered wing
prior to maximum 1ift. For an unswept wing, a decrease in taper ratio
caused a small decrease in the damping in roll throughout the 1lift-
coefficient range. The rate of change with 1ift coefficient of the
yawing moment due to roll and of the lateral force due to roll were
slightly decreased at low 1lift coefficients by a decrease in taper ratio.

Available theory generally predicts the effect of change in taper
ratio on the rate of change of the yawing moment due to roll with 1lift
coefficient and on the damping in roll at zero 1lift more accurately than
it does the effect of sweep. Tip-suction effects, not accounted for by
the theory, may cause large errors in the theoretical values of the
yawing moment due to roll and the lateral force due to roll. TFor a swept
wing the yawing moment due to roll can be estimated by applying a cor-
rection to the available theory by utilizing the experimental value of
the lateral force for an unswept wing of the same aspect ratio and taper
ratio (the tip-suction force)‘and the geometric characteristics of the

wing.
INTRODUCTION

An extensive investigation is being carried out at the Langley
stability tunnel to determine the effect of various geometric variables
on rotary and static stability characteristics. The values of the

lgupersedes the recently declassified NACA RM 18H18, "Effect of
Taper Ratio on the Low-Speed Rolling Stability Derivatives of Swept and

Unswept Wings of Aspect Ratio 2.61" by Jack D. Brewer and Lewis R. Fisher,
1948,
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stability derivatives are required for the determination of the dynamic
flight characteristics of an airplane. The static stability derivatives
are readily determined by conventional wind-tunnel tests, and the rotary
stability derivatives, heretofore generally estimated from theory, can
now also be quickly determined by the utilization of the stability-wind-
tunnel curved- and rolling-flow test equipment (references 1 and 2).

In this paper results are presented of tests made in stralght and
rolling flow to determine the effect of taper ratio on the rolling charac-
teristics of a 45° sweptback wing and an unswept wing (both having an
aspect ratio of 2.61). The effects of changes 1in taper ratio on the yaw-
ing characteristics of the swept wings are presented in reference 3.

SYMBOLS

The data are presented in the form of standard NACA coefficients of
forces and moments which are referred, in all cases, to the stability axes,
wlth the origin at the quarter-chord point of the mean aerodynamic chord
of the models tested. The positive directions of the forces, moments, and
angular displacements are shown in figure 1. The coefficients and symbols
used herein are defined as follows:

Cy, 11ft coefficient (L/qgS)

Cx longitudinal-force coefficient (X/qS)
Cp drag coefficlent (-Cyx for y = 0°)
Cy lateral-force coefficient (Y/qS)

c, rolling-moment coefficient (L'/qSb)
Coy pitching-moment coefficient (M/qSE)
Cp yawing-moment coefficient (N/qSb)

L 1ift, pounds

X longitudinal force, pounds

Y lateral force, pounds

L' rolling moment about X-axis, foot-pounds

M pitching moment about Y-axis, foot-pounds
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X

pb
2v

yewing moment about Z-axis, foot-pounds
. 1.2
dynamic pressure, pounds per square foot §pV

mass density of air, slugs per cubic foot

free-stream velocity, feet per second

wing area, square feet

span of wing measured perpendicular to plane of éymmetry, Tfeet

chord of wing, measured parallel to plane of symmetry, feet

o b/2
mean aerodynamic chord, feet g\/ﬁ c? dy
0]

distance measured perpendicular to plane of symmetry, feet

distance of quarter-chord point of any chordwise section from
leading edge of root section, feet

distance from leading edge of root chord to quarter chord of

o b/2
mean aerodynamic chord, feet §L/h cx dy
0

aspect ratio (bg/s)

taper ratio (Tlp chord (extended) )

Root chord

angle of attack measured in plane of symmetry, degrees
angle of yaw, degrees

sweep of quarter-chord line, degrees
wing-tip helix angle, radians

rolling angular velocity, redians per second
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APPARATUS AND TESTS

The tests of the present investigation were conducted in the 6-foot-
diameter rolling-flow test section of the Langley stability tunnel. 1In
this test section, it is possible to rotate the air stream sbout a rigidly
mounted model in such a way as to simulate rolling flight. (See reference 2.)

The models tested consisted of five mahogany wings having the
NACA 0012 contour in sections normal to the quarter-chord line, The
aspect ratio of each model was 2.61. Three wings having taper ratios of
1.00, 0.50, and 0.25 were swept back U450 at the quarter-chord line; two
wings having taper ratios of 1.00 and 0.50 had zero sweep at the quarter-
chord line. Plan forms of the five models are shown in figure 2,

The models were rigidly mounted at the quarter-chord point of the
mean aerodynamic chord on a six-component strain-gage-balance strut
(reference 4), Lift, longitudinal force, and pitching moment were meas-
ured in straight flow through an angle-of-attack range from about -4° to
an angle beyond the stall; lateral force, rolling moment, and yawing
moment were measured through the same angle-of-attack range in rolling
flow for wing-tip helix angles pb/2V of +0.021 radian and +0.062 radian.
All the tests were made at a dynamic pressure of 39.7 pounds per square
foot which corresponds to a Mach number of 0.17. The corresponding

Reynolds number, based on the mean aerodynamic chord, was 1.40 x lO6 for
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the untapered wings, 1.45 x lO6 for the wings with taper ratios of 0.50,

and 1.56 X 106 for the wing with a taper ratio of 0.25. A photograph
of one of the models mounted in the tunnel is presented as figure 3.

CORRECTIONS

Corrections for the effects of jet boundaries, based on unswept-wing
theory, have been applied to the angle of attack, the longitudinal-force
coefficient, and the rolling-moment coefficient.

No corrections for the effects of blocking, turbulence, or for the
effects of static-pressure gradient on the boundary-layer flow have been
applied.

RESULTS AND DISCUSSION

The 1ift, longitudinal-force, and pitching-moment characteristics
for the three swept wings tested are presented in figure 4 (for a dynamic
pressure of 39.7 1b/sq ft). These results agree well with the results
previously obtained for the same wings and presented in figure 4 of
reference 3 (for a dynamic pressure of 24,9 1b/sq ft). The rearward move-
ment of the aerodynamic center with a decrease in taper ratio is apparent
from the pitching-moment results; the effect of taper ratio on the 1lift
. and longitudinal-force characteristics is small at low and moderate lift
coefficients. At high 1lift coefficients, larger longitudinal-force
coefficients were obtained with the more highly tapered wings. At a
1ift coefficient of about 0.6, an increase occurred in the lift-curve
slope; this increase became smaller as the taper ratio decreased,.

Reducing the taper ratio of the unswept wing from 1.00 to 0.50 (see
fig. 5) caused a small increase in the lift-curve slope. As was true
in the case of the swept wing, taper ratio had a negligible effect on
the maximum value of 1ift ccefficient. The angle of attack at which the
maximum value occurred decreased with a decrease in taper ratio, a
result opposite to that obtained for the swept wings. The pitching-
moment results for the unswept wings indicate almost no shift of the
aerodynamic center with a change in taper ratio. Changing the taper
ratio had a negligible effect on the longitudinal-force results for the
unswept wings.

The effect of sweep on the 1ift characteristics of a tapered wing
can be determined from the data presented in figure 5. Sweep caused a
decrease in the lift-curve slope, an increase in the maximum value of
1lift coefficient, and an increase in the angle of attack at which it




¢ NACA TN 2555

occurred. The shift rearward of the aerodynamic center with sweep is
appsrent from the pitching-moment results; there is little change in the
value of the longitudinal-force coefficient up to the 1lift coefficient
at which the wing stalls.

In reference 3, it was shown that, for the swept wings, there was a
large change in the slopes of the lateral-stability-derivative curves and
of the yawing-derivative curves at a 1ift coefficilent of about 0.6, the

CL2
1ift coefficient at which the quantity Cp - _;K began to increase

rapidly. For the same wings the rolling parameters C,.5Cp , and CY

D b b
plotted against 1ift coefficient in figure 6 of the present paper also
show large changes in slope at a 1ift coefficient of about 0.6.

In figure 6 it can be seen that a decrease in taper ratio caused a
small decrease in damping in roll at low and moderate 1lift coefficients;
at high 1ift coefficients, decreasing the taper ratio caused a large
reduction in the damping in roll and greatly reduced the increase obtained
for the untapered wing prior to maximum lift. The rate of change of CYp

with 1ift coefficient was slightly decreased with a decrease in taper
ratio at low lift coefficients; at high 1ift coefficients there was no
consistent variation with taper ratio for either Cnp or Cy .

1Y

For the unswept wings (fig. 7) & decrease in taper ratio caused a
small decreagse in the damping in roll throughout the lift-coefficient
range. The rate of change of Cnp and CYP with 1ift coefficient was

8lightly decreased by a decrease in taper ratio.

The variation with taper ratio of Cp and CYP for the low
Per, CrL,

lift-coefficient range and of damping in roll at zero 1ift coefficient
(Cz ) are presented in figure 8. Experimental values of ¢y
bP/Cy=0 Y

at zero lift are compared with values indicated by the theories of refer-
ences 5 and 6. Theoretical values of Can and CYPC were obtained
L
by the method of reference 5 which is based on a lifting-line-theory
concept and which does not consider the effect of unbalanced tip suction
under asymmetric conditions. The experimental values of CYP (énd CYPC )
L

for the wings with zero sweep show that such unbalanced suction does exist.
If the suction forces are assumed to be independent of sweep, a correction
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to the theoretical value of Can for a swept wing can be obtained.
L
For example, when the value of CYPC due to tip suction for the unswept
: L
wing with 0.5 taper ratio (0.28 from fig. 8) is assumed to be the same
for the 450 swept wing of 0.5 taper ratio, a correction to Cnp can
CL
be determined. When this value of CYP is multiplied by -1.01, the
CL
longitudinal distance between the mounting point (quarter chord of the
mean aerodynamic chord) and the 50-percent point of the tip chord (where
the suction force is assumed to act), and when the result is divided by
the span 3.04, a value of CnPC due to tip suction is determined; in
L

this case, the addition to Cp is ~0.093. The final value of Ca.
Pey, Pcy,

is then the sum of the theoretical value (—0.065) and the tip-suction

increment (-0.093). This value (-0.158) is in close agreement with the

actual experimental value of -0.160. Theory predicts the effect of a

change in taper ratio on C and C more accurately than it

g D ( Zp)cL=o Bpoy y
does the effect of sweep. The apparent close agreement between the
theoretical and experimental values of CYPC for the swept wings is
‘ v L

actually due to the overprediction of the theory which, in this case,

compensates for the unaccounted-for tip-suction effect., As the aspect

ratio of the wing increases, the value of Cy due to the tip suction

would be expected to become smaller. The errors assoclated with the
neglect of the tip suction in the theoretical analysis should then

be quite small for wings of high aspect ratio. The theoretical values
of C3, .at zero 1lift as obtained by the method of reference 6 show

the same effect of a change in taper ratio as did the theory of
reference 5,

CONCLUSIONS

Results of tests made in the 6-foot-diameter rolling-flow test
section of the Langley stability tumnel in straight and rolling flow
on a series of tapered swept wings indicate the following conclusions:

1. A decrease in taper ratio of a swepl wing caused a small decrease
in damping in roll at low and moderate 1ift coefficients; at high 1lift
coefficients, decreasing the taper ratio caused a large reduction in the
damping in roll and greatly reduced the increase obtained for the untapered
. wing prior to maximum lift., For an unswept wing, a decrease in taper ratio
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caused a small decrease in the damping in roll throughout the 1ift-
coefficient range.

2. At low 1lift coefficients, a decrease in taper ratio caused a small
decrease in the rate of change of the yawing moment due to roll and the
lateral force due to roll with 1ift coefficient.

3. Available theory predicts the effect of change in taper ratio
on the rate of change of the yawing moment due to roll with 1ift co-
efficient and on the dampling in roll at zero 1ift more accurately than it
does the effect of sweep.

L. Tip suction may cause large errors in the available theoretical
values of the yawing moment due to roll and the lateral force due to
roll; the yawlng moment due to roll of a swept wing can be estimated
quite accurately by applying a simple correction to the available theory by
utilizing the experimental value of the lateral force for an unswept
wing of the same aspect ratio and taper ratio (the tip-suction force)
and the geometric characteristics of the wing.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., August 24, 1948
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